Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Protoc ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092943

RESUMO

The human gut microbiome is a key contributor to health, and its perturbations are linked to many diseases. Small-molecule xenobiotics such as drugs, chemical pollutants and food additives can alter the microbiota composition and are now recognized as one of the main factors underlying microbiome diversity. Mapping the effects of such compounds on the gut microbiome is challenging because of the complexity of the community, anaerobic growth requirements of individual species and the large number of interactions that need to be quantitatively assessed. High-throughput screening setups offer a promising solution for probing the direct inhibitory effects of hundreds of xenobiotics on tens of anaerobic gut bacteria. When automated, such assays enable the cost-effective investigation of a wide range of compound-microbe combinations. We have developed an experimental setup and protocol that enables testing of up to 5,000 compounds on a target gut species under strict anaerobic conditions within 5 d. In addition, with minor modifications to the protocol, drug effects can be tested on microbial communities either assembled from isolates or obtained from stool samples. Experience in working in an anaerobic chamber, especially in performing delicate work with thick chamber gloves, is required for implementing this protocol. We anticipate that this protocol will accelerate the study of interactions between small molecules and the gut microbiome and provide a deeper understanding of this microbial ecosystem, which is intimately intertwined with human health.

2.
Mol Syst Biol ; 19(9): e11525, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37485738

RESUMO

Multi-omics analyses are used in microbiome studies to understand molecular changes in microbial communities exposed to different conditions. However, it is not always clear how much each omics data type contributes to our understanding and whether they are concordant with each other. Here, we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers (16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics and metabolomics). We find that all the omics methods with species resolution are highly consistent in estimating relative species abundances. Furthermore, different omics methods complement each other for capturing functional changes. For example, while nearly all the omics data types captured that the antipsychotic drug chlorpromazine selectively inhibits Bacteroidota representatives in the community, the metatranscriptome and metaproteome suggested that the drug induces stress responses related to protein quality control. Metabolomics revealed a decrease in oligosaccharide uptake, likely caused by Bacteroidota depletion. Our study highlights how multi-omics datasets can be utilized to reveal complex molecular responses to external perturbations in microbial communities.


Assuntos
Microbiota , Multiômica , Humanos , RNA Ribossômico 16S/genética , Microbiota/genética , Metabolômica/métodos , Bactérias/genética , Metagenômica/métodos
3.
Nutrients ; 14(18)2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36145158

RESUMO

Back in 2010, when we first published data on the in vivo nutrigenomic effects of virgin olive oil polyphenols within the frame of the Mediterranean diet [...].


Assuntos
Dieta Mediterrânea , Polifenóis , Humanos , Nutrigenômica , Azeite de Oliva/farmacologia , Óleos de Plantas/farmacologia , Polifenóis/farmacologia
4.
Nature ; 609(7925): 144-150, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35850148

RESUMO

Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.


Assuntos
Antitoxinas , Bacteriófagos , Retroelementos , Salmonella typhimurium , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Bacteriófagos/metabolismo , DNA Bacteriano/genética , DNA de Cadeia Simples/genética , Conformação de Ácido Nucleico , Prófagos/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Retroelementos/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/virologia , Sistemas Toxina-Antitoxina/genética
5.
PLoS Pathog ; 18(6): e1010195, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35737716

RESUMO

Copper homeostasis mechanisms are essential for microbial adaption to changing copper levels within the host during infection. In the opportunistic fungal pathogen Cryptococcus neoformans (Cn), the Cn Cbi1/Bim1 protein is a newly identified copper binding and release protein that is highly induced during copper limitation. Recent studies demonstrated that Cbi1 functions in copper uptake through the Ctr1 copper transporter during copper limitation. However, the mechanism of Cbi1 action is unknown. The fungal cell wall is a dynamic structure primarily composed of carbohydrate polymers, such as chitin and chitosan, polymers known to strongly bind copper ions. We demonstrated that Cbi1 depletion affects cell wall integrity and architecture, connecting copper homeostasis with adaptive changes within the fungal cell wall. The cbi1Δ mutant strain possesses an aberrant cell wall gene transcriptional signature as well as defects in chitin / chitosan deposition and exposure. Furthermore, using Cn strains defective in chitosan biosynthesis, we demonstrated that cell wall chitosan modulates the ability of the fungal cell to withstand copper stress. Given the previously described role for Cbi1 in copper uptake, we propose that this copper-binding protein could be involved in shuttling copper from the cell wall to the copper transporter Ctr1 for regulated microbial copper uptake.


Assuntos
Quitosana , Criptococose , Cryptococcus neoformans , Parede Celular/metabolismo , Quitina/metabolismo , Quitosana/metabolismo , Cobre/metabolismo , Proteínas de Transporte de Cobre , Criptococose/microbiologia , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Homeostase
6.
Nature ; 599(7883): 120-124, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34646011

RESUMO

Antibiotics are used to fight pathogens but also target commensal bacteria, disturbing the composition of gut microbiota and causing dysbiosis and disease1. Despite this well-known collateral damage, the activity spectrum of different antibiotic classes on gut bacteria remains poorly characterized. Here we characterize further 144 antibiotics from a previous screen of more than 1,000 drugs on 38 representative human gut microbiome species2. Antibiotic classes exhibited distinct inhibition spectra, including generation dependence for quinolones and phylogeny independence for ß-lactams. Macrolides and tetracyclines, both prototypic bacteriostatic protein synthesis inhibitors, inhibited nearly all commensals tested but also killed several species. Killed bacteria were more readily eliminated from in vitro communities than those inhibited. This species-specific killing activity challenges the long-standing distinction between bactericidal and bacteriostatic antibiotic classes and provides a possible explanation for the strong effect of macrolides on animal3-5 and human6,7 gut microbiomes. To mitigate this collateral damage of macrolides and tetracyclines, we screened for drugs that specifically antagonized the antibiotic activity against abundant Bacteroides species but not against relevant pathogens. Such antidotes selectively protected Bacteroides species from erythromycin treatment in human-stool-derived communities and gnotobiotic mice. These findings illluminate the activity spectra of antibiotics in commensal bacteria and suggest strategies to circumvent their adverse effects on the gut microbiota.


Assuntos
Antibacterianos/efeitos adversos , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Animais , Antibacterianos/classificação , Bactérias/classificação , Bactérias Anaeróbias/efeitos dos fármacos , Bacteroides/efeitos dos fármacos , Clostridioides difficile/efeitos dos fármacos , Dicumarol/farmacologia , Eritromicina/farmacologia , Fezes/microbiologia , Feminino , Vida Livre de Germes , Humanos , Macrolídeos/farmacologia , Masculino , Camundongos , Microbiota/efeitos dos fármacos , Simbiose/efeitos dos fármacos , Tetraciclinas/farmacologia
7.
J Biol Chem ; 296: 100391, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33567338

RESUMO

Cryptococcus neoformans is an opportunistic fungal pathogen whose pathogenic lifestyle is linked to its ability to cope with fluctuating levels of copper (Cu), an essential metal involved in multiple virulence mechanisms, within distinct host niches. During lethal cryptococcal meningitis in the brain, C. neoformans senses a Cu-deficient environment and is highly dependent on its ability to scavenge trace levels of Cu from its host and adapt to Cu scarcity to successfully colonize this niche. In this study, we demonstrate for this critical adaptation, the Cu-sensing transcription factor Cuf1 differentially regulates the expression of the SOD1 and SOD2 superoxide dismutases in novel ways. Genetic and transcriptional analysis reveals Cuf1 specifies 5'-truncations of the SOD1 and SOD2 mRNAs through specific binding to Cu responsive elements within their respective promoter regions. This results in Cuf1-dependent repression of the highly abundant SOD1 and simultaneously induces expression of two isoforms of SOD2, the canonical mitochondrial targeted isoform and a novel alternative cytosolic isoform, from a single alternative transcript produced specifically under Cu limitation. The generation of cytosolic Sod2 during Cu limitation is required to maintain cellular antioxidant defense against superoxide stress both in vitro and in vivo. Further, decoupling Cuf1 regulation of Sod2 localization compromises the ability of C. neoformans to colonize organs in murine models of cryptococcosis. Our results provide a link between transcription factor-mediated alteration of protein localization and cell proliferation under stress, which could impact tissue colonization by a fungal pathogen.


Assuntos
Cryptococcus neoformans/enzimologia , Proteínas Fúngicas/metabolismo , Superóxido Dismutase-1/metabolismo , Superóxido Dismutase/metabolismo , Fatores de Transcrição/metabolismo , Animais , Cobre/metabolismo , Cryptococcus neoformans/genética , Cryptococcus neoformans/isolamento & purificação , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Masculino , Camundongos , Isoformas de Proteínas , Frações Subcelulares/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase-1/genética
8.
iScience ; 23(11): 101725, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33225241

RESUMO

Upon heat shock, the fission yeast Hsp40 chaperone Mas5 drives temperature-sensitive proteins toward protein aggregate centers (PACs) to avoid their degradation until lower temperatures favor their refolding. We show here that cells lacking Mas5 are resistant to oxidative stress. Components of the general stress pathways, the MAP kinase Sty1 and the transcription factor Atf1, are suppressors of this phenotype. Strain Δmas5 expresses higher levels of Sty1- and Atf1-dependent stress genes than wild-type cells. Pyp1, the main tyrosine phosphatase maintaining Sty1 inactive in the absence of stress, is a temperature-sensitive protein that aggregates upon temperature up-shifts in a Mas5-dependent manner. In strain Δmas5, Pyp1 is sent to proteasomal degradation even in the absence of stress. We propose that Pyp1 is a thermo-sensitive phosphatase, which during heat stress coalescences into PACs in a Mas5-dependent manner, to promote full activation of the anti-stress Sty1-Atf1 cascade.

9.
Nat Chem Biol ; 16(3): 337-344, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932719

RESUMO

Infection by the fungal pathogen Cryptococcus neoformans causes lethal meningitis, primarily in immune-compromised individuals. Colonization of the brain by C. neoformans is dependent on copper (Cu) acquisition from the host, which drives critical virulence mechanisms. While C. neoformans Cu+ import and virulence are dependent on the Ctr1 and Ctr4 proteins, little is known concerning extracellular Cu ligands that participate in this process. We identified a C. neoformans gene, BIM1, that is strongly induced during Cu limitation and which encodes a protein related to lytic polysaccharide monooxygenases (LPMOs). Surprisingly, bim1 mutants are Cu deficient, and Bim1 function in Cu accumulation depends on Cu2+ coordination and cell-surface association via a glycophosphatidyl inositol anchor. Bim1 participates in Cu uptake in concert with Ctr1 and expression of this pathway drives brain colonization in mouse infection models. These studies demonstrate a role for LPMO-like proteins as a critical factor for Cu acquisition in fungal meningitis.


Assuntos
Cobre/metabolismo , Cryptococcus neoformans/metabolismo , Oxigenases de Função Mista/metabolismo , Animais , Criptococose/metabolismo , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Feminino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Meningite/metabolismo , Meningite/fisiopatologia , Camundongos , Camundongos Endogâmicos A , Polissacarídeos/metabolismo , Virulência
10.
Redox Biol ; 28: 101305, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514053

RESUMO

Signaling cascades respond to specific inputs, but also require active interventions to be maintained in their basal/inactive levels in the absence of the activating signal(s). In a screen to search for protein quality control components required for wild-type tolerance to oxidative stress in fission yeast, we have isolated eight gene deletions conferring resistance not only to H2O2 but also to caffeine. We show that dual resistance acquisition is totally or partially dependent on the transcription factor Pap1. Some gene products, such as the ribosomal-ubiquitin fusion protein Ubi1, the E2 conjugating enzyme Ubc2 or the E3 ligase Ubr1, participate in basal ubiquitin labeling of Pap1, and others, such as Rpt4, are non-essential constituents of the proteasome. We demonstrate here that basal nucleo-cytoplasmic shuttling of Pap1, occurring even in the absence of stress, is sufficient for the interaction of the transcription factor with nuclear Ubr1, and we identify a 30 amino acids peptide in Pap1 as the degron for this important E3 ligase. The isolated gene deletions increase only moderately the concentration of the transcription factor, but it is sufficient to enhance basal tolerance to stress, probably by disturbing the inactive stage of this signaling cascade.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/crescimento & desenvolvimento , Adenosina Trifosfatases/genética , Cafeína/farmacologia , Farmacorresistência Fúngica Múltipla , Deleção de Genes , Peróxido de Hidrogênio/farmacologia , Transporte Proteico , Proteólise , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Transdução de Sinais , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/genética
11.
Mol Microbiol ; 108(5): 473-494, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29608794

RESUMO

The ability of the human fungal pathogen Cryptococcus neoformans to adapt to variable copper (Cu) environments within the host is key for successful dissemination and colonization. During pulmonary infection, host alveolar macrophages compartmentalize Cu into the phagosome and C. neoformans Cu-detoxifying metallothioneins, MT1 and MT2, are required for survival of the pathogen. In contrast, during brain colonization the C. neoformans Cu+ importers Ctr1 and Ctr4 are required for virulence. Central for the regulation and expression of both the Cu detoxifying MT1/2 and the Cu acquisition Ctr1/4 proteins is the Cu-metalloregulatory transcription factor Cuf1, an established C. neoformans virulence factor. Due to the importance of the distinct C. neoformans Cu homeostasis mechanisms during host colonization and virulence, and to the central role of Cuf1 in regulating Cu homeostasis, we performed a combination of RNA-Seq and ChIP-Seq experiments to identify differentially transcribed genes between conditions of high and low Cu. We demonstrate that the transcriptional regulation exerted by Cuf1 is intrinsically complex and that Cuf1 also functions as a transcriptional repressor. The Cu- and Cuf1-dependent regulon in C. neoformans reveals new adaptive mechanisms for Cu homeostasis in this pathogenic fungus and identifies potential new pathogen-specific targets for therapeutic intervention in fungal infections.


Assuntos
Cobre/metabolismo , Criptococose/microbiologia , Cryptococcus neoformans/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Cryptococcus neoformans/patogenicidade , Cryptococcus neoformans/fisiologia , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Estudo de Associação Genômica Ampla , Humanos , RNA Fúngico , Fatores de Transcrição/genética , Virulência/genética
12.
mBio ; 8(5)2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089435

RESUMO

Copper (Cu) ions serve as catalytic cofactors to drive key biochemical processes, and yet Cu levels that exceed cellular homeostatic control capacity are toxic. The underlying mechanisms for Cu toxicity are poorly understood. During pulmonary infection by the fungal pathogen Cryptococcus neoformans, host alveolar macrophages compartmentalize Cu to the phagosome, and the ability to detoxify Cu is critical for its survival and virulence. Here, we report that iron-sulfur (Fe-S) clusters are critical targets of Cu toxicity in both Saccharomyces cerevisiae and C. neoformans in a manner that depends on the accessibility of Cu to the Fe-S cofactor. To respond to this Cu-dependent Fe-S stress, C. neoformans induces the transcription of mitochondrial ABC transporter Atm1, which functions in cytosolic-nuclear Fe-S protein biogenesis in response to Cu and in a manner dependent on the Cu metalloregulatory transcription factor Cuf1. As Atm1 functions in exporting an Fe-S precursor from the mitochondrial matrix to the cytosol, C. neoformans cells depleted for Atm1 are sensitive to Cu even while the Cu-detoxifying metallothionein proteins are highly expressed. We provide evidence for a previously unrecognized microbial defense mechanism to deal with Cu toxicity, and we highlight the importance for C. neoformans of having several distinct mechanisms for coping with Cu toxicity which together could contribute to the success of this microbe as an opportunistic human fungal pathogen.IMPORTANCEC. neoformans is an opportunistic pathogen that causes lethal meningitis in over 650,000 people annually. The severity of C. neoformans infections is further compounded by the use of toxic or poorly effective systemic antifungal agents as well as by the difficulty of diagnosis. Cu is a natural potent antimicrobial agent that is compartmentalized within the macrophage phagosome and used by innate immune cells to neutralize microbial pathogens. While the Cu detoxification machinery of C. neoformans is essential for virulence, little is known about the mechanisms by which Cu kills fungi. Here we report that Fe-S cluster-containing proteins, including members of the Fe-S protein biogenesis machinery itself, are critical targets of Cu toxicity and therefore that this biosynthetic process provides an important layer of defense against high Cu levels. Given the role of Cu ionophores as antimicrobials, understanding how Cu is toxic to microorganisms could lead to the development of effective, broad-spectrum antimicrobials. Moreover, understanding Cu toxicity could provide additional insights into the pathophysiology of human diseases of Cu overload such as Wilson's disease.


Assuntos
Cobre/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Estresse Fisiológico , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Cryptococcus neoformans/patogenicidade , Citosol/metabolismo , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Proteínas Ferro-Enxofre/genética , Macrófagos/imunologia , Macrófagos/microbiologia , Metalotioneína/genética , Metalotioneína/metabolismo , Camundongos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Virulência
13.
PLoS Genet ; 13(6): e1006858, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28640807

RESUMO

The thioredoxin and glutaredoxin pathways are responsible of recycling several enzymes which undergo intramolecular disulfide bond formation as part of their catalytic cycles such as the peroxide scavengers peroxiredoxins or the enzyme ribonucleotide reductase (RNR). RNR, the rate-limiting enzyme of deoxyribonucleotide synthesis, is an essential enzyme relying on these electron flow cascades for recycling. RNR is tightly regulated in a cell cycle-dependent manner at different levels, but little is known about the participation of electron donors in such regulation. Here, we show that cytosolic thioredoxins Trx1 and Trx3 are the primary electron donors for RNR in fission yeast. Unexpectedly, trx1 transcript and Trx1 protein levels are up-regulated in a G1-to-S phase-dependent manner, indicating that the supply of electron donors is also cell cycle-regulated. Indeed, genetic depletion of thioredoxins triggers a DNA replication checkpoint ruled by Rad3 and Cds1, with the final goal of up-regulating transcription of S phase genes and constitutive RNR synthesis. Regarding the thioredoxin and glutaredoxin cascades, one combination of gene deletions is synthetic lethal in fission yeast: cells lacking both thioredoxin reductase and cytosolic dithiol glutaredoxin. We have isolated a suppressor of this lethal phenotype: a mutation at the Tpx1-coding gene, leading to a frame shift and a loss-of-function of Tpx1, the main client of electron donors. We propose that in a mutant strain compromised in reducing equivalents, the absence of an abundant and competitive substrate such as the peroxiredoxin Tpx1 has been selected as a lethality suppressor to favor RNR function at the expense of the non-essential peroxide scavenging function, to allow DNA synthesis and cell growth.


Assuntos
Transporte de Elétrons/genética , Peroxirredoxinas/genética , Ribonucleotídeo Redutases/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxinas/genética , Catálise , Quinase do Ponto de Checagem 2/genética , Replicação do DNA/genética , Glutarredoxinas/metabolismo , Oxirredução , Peróxidos/metabolismo , Peroxirredoxinas/metabolismo , Ribonucleotídeo Redutases/metabolismo , Schizosaccharomyces/enzimologia , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/metabolismo , Tiorredoxinas/metabolismo
14.
J Biol Chem ; 290(31): 18945-53, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26055724

RESUMO

Fungal infections are responsible for millions of human deaths annually. Copper, an essential but toxic trace element, plays an important role at the host-pathogen axis during infection. In this review, we describe how the host uses either Cu compartmentalization within innate immune cells or Cu sequestration in other infected host niches such as in the brain to combat fungal infections. We explore Cu toxicity mechanisms and the Cu homeostasis machinery that fungal pathogens bring into play to succeed in establishing an infection. Finally, we address recent approaches that manipulate Cu-dependent processes at the host-pathogen axis for antifungal drug development.


Assuntos
Cobre/fisiologia , Interações Hospedeiro-Patógeno , Metaloproteínas/fisiologia , Micoses/imunologia , Animais , Proteínas Fúngicas/fisiologia , Humanos , Imunidade Inata , Micoses/microbiologia , Virulência
15.
Biochemistry ; 53(16): 2560-80, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24738931

RESUMO

Activation of redox cascades through hydrogen peroxide-mediated reversible cysteine oxidation is a major mechanism for intracellular signaling. Understanding why some cysteine residues are specifically oxidized, in competition with other proximal cysteine residues and in the presence of strong redox buffers, is therefore crucial for understanding redox signaling. In this review, we explore the recent advances in thiol-redox chemistry linked to signaling. We describe the last findings in the field of redox sensors, those that are naturally present in different model organisms as well as those that have been engineered to quantify intracellular hydrogen peroxide concentrations. Finally, we provide a summary of the newest approaches developed to study reversible cysteine oxidation at the proteomic level.


Assuntos
Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteômica/métodos , Transdução de Sinais , Técnicas Biossensoriais/métodos , Cisteína/química , Glutationa/metabolismo , Oxirredução , Espécies Reativas de Oxigênio , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
16.
Nat Protoc ; 9(5): 1131-45, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24743420

RESUMO

Reversible thiol oxidation of cysteine residues occurs in many intracellular catalytic and signaling processes. Here we describe an optimized protocol, which can be completed in ∼5 d, to unambiguously identify specific cysteine residues that are transiently and reversibly oxidized by comparing two complex biological samples obtained from yeast cell cultures at the proteome level. After 'freezing' the in vivo thiol stage of cysteine residues by medium acidification, we first block reduced thiols in extracts with iodoacetamide (IAM), and then we sequentially reduce and label reversible oxidized thiols with the biotin-based heavy or light IAM derivatives, which are known as isotope-coded affinity tag (ICAT) reagents, so that the two samples can be compared at once after combination of the labeled extracts, trypsin digestion, streptavidin-affinity purification of peptides containing oxidized cysteines, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. For the same protein extracts, before cysteine-containing peptide enrichment, individual relative protein concentrations are obtained by stable-isotope dimethyl labeling.


Assuntos
Cisteína/metabolismo , Espectrometria de Massas/métodos , Proteínas/metabolismo , Compostos de Sulfidrila/metabolismo , Cromatografia Líquida , Marcação por Isótopo , Oxirredução , Espectrometria de Massas em Tandem , Leveduras
17.
Redox Biol ; 2: 395-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24563858

RESUMO

Cysteine residues, and in particular their thiolate groups, react not only with reactive oxygen species but also with electrophiles and with reactive nitrogen species. Thus, cysteine oxidation has often been linked to the toxic effects of some of these reactive molecules. However, thiol-based switches are common in protein sensors of antioxidant cascades, in both prokaryotic and eukaryotic organisms. We will describe here three redox sensors, the transcription factors OxyR, Yap1 and Pap1, which respond by disulfide bond formation to hydrogen peroxide stress, focusing specially on the differences among the three peroxide-sensing mechanisms.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Cisteína/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cistina/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Glutationa Peroxidase/metabolismo , Oxirredução , Estresse Oxidativo , Proteínas Associadas a Pancreatite , Peroxirredoxinas/metabolismo , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Fatores de Transcrição/metabolismo
18.
Mol Microbiol ; 92(2): 246-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24521463

RESUMO

The main peroxiredoxin in Schizosaccharomyces pombe, Tpx1, is important to sustain aerobic growth, and cells lacking this protein are only able to grow on solid plates under anaerobic conditions. We have found that deletion of the gene coding for thioredoxin reductase, trr1, is a suppressor of the sensitivity to aerobic growth of Δtpx1 cells, so that cells lacking both proteins are able to grow on solid plates in the presence of oxygen. We have investigated this suppression effect, and determined that it depends on the presence of catalase, which is constitutively expressed in Δtrr1 cells in a transcription factor Pap1-dependent manner. A complete characterization of the repertoire of hydrogen peroxide scavenging activities in fission yeast suggests that Tpx1 is the only enzyme with sufficient sensitivity for peroxides and cellular abundance as to control the low levels produced during aerobic growth, catalase being the next barrier of detoxification when the steady-state levels of peroxides are increased in Δtpx1 cells. Gpx1, the only glutathione peroxidase encoded by the S. pombe genome, only has a minor secondary role when extracellular peroxides are added. Our study proposes non-overlapping roles for the different hydrogen peroxide scavenging activities of this eukaryotic organism.


Assuntos
Catalase/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Aerobiose , Anaerobiose , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Oxigênio/metabolismo , Proteínas Associadas a Pancreatite , Peroxirredoxinas/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxina Dissulfeto Redutase/genética
19.
Cell Rep ; 5(5): 1413-24, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24316080

RESUMO

In fission yeast, the transcription factor Pap1 undergoes H2O2-dependent oxidation that promotes its nuclear accumulation and the activation of an antioxidant gene program. However, the mechanisms that regulate the sensitivity and selectivity of Pap1 activation by peroxides are not fully understood. Here, we demonstrate that the peroxiredoxin Tpx1, the sensor of this signaling cascade, activates the otherwise unresponsive Pap1 protein once the main cytosolic reduced thioredoxin, Trx1, becomes transiently depleted. In other words, Pap1 works as an alternative electron donor for oxidized Tpx1. We have trapped the very transient Tpx1-Pap1 intermediate in cells depleted in Trx1, as we show here using mass spectrometry. Recycling of Tpx1 by Trx1 is required for the efficient signaling to Pap1, suggesting that the complete cycle of H2O2 scavenging by Tpx1 and further recycling of oxidized Tpx1 by Trx1 is required for full downstream activation of the redox cascade.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Peróxido de Hidrogênio/farmacologia , Peroxirredoxinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Oxirredução , Proteínas Associadas a Pancreatite , Peroxirredoxinas/genética , Ligação Proteica , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética , Tiorredoxinas/genética , Tiorredoxinas/metabolismo
20.
Mol Microbiol ; 90(5): 1113-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24118096

RESUMO

Amino acid methionine can suffer reversible oxidation to sulphoxide and further irreversible over-oxidation to methionine sulphone. As part of the cellular antioxidant scavenging activities are the methionine sulphoxide reductases (Msrs), with a reported role in methionine sulphoxide reduction, both free and in proteins. Three families of Msrs have been described, but the fission yeast genome only includes one representative for two of these families: MsrA/Mxr1 and MsrB/Mxr2. We have investigated their role in methionine reduction and H2 O2 sensitivity. We show here that MsrA/Mxr1 is able to reduce free oxidized methionine. Cells lacking each one of the genes are not significantly sensitive to different types of oxidative stresses, neither display altered life span. However, only when deletion of msrA/mxr1 is combined with deletion of met6, which confers methionine auxotrophy, the survival upon H2 O2 stress decreases by 100-fold. In fact, cells lacking only Met6, and which therefore require addition of methionine to the growth media, are extremely sensitive to H2 O2 stress. These and other evidences suggest that oxidation of free methionine is a primary target of peroxide toxicity in cells devoid of methionine biosynthetic capacity, and that an important role of Msrs is to recycle this oxidized free amino acid.


Assuntos
Peróxido de Hidrogênio/toxicidade , Metionina Sulfóxido Redutases/metabolismo , Metionina/metabolismo , Estresse Oxidativo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/enzimologia , Metionina/análogos & derivados , Metionina Sulfóxido Redutases/genética , Oxirredução , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...